
MacDiff: Unified Skeleton Modeling with Masked Conditional Diffusion
(Supplementary Material)

Contents

1. Theoretical Proofs 1
1.1. Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Bayes Error Rate of Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Implementation Details 2
2.1. Generative Models for Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2. Generation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3. Noise Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Qualitative Results and Discussion 4
3.1. Motion Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2. Motion Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3. One-Step Denoising for Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4. More Ablation Study 4
4.1. Conditioning Module Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2. Diffusion Prediction Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3. Global-Local Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1. Theoretical Proofs
1.1. Mutual Information

Proposition 1. Let X,Y, Z be arbitrary random variables, then the mutual information of X and (Y,Z) can be written as:

I((Y,Z);X) = I(Y ;X) + I(Z;X|Y ). (1)

Proof. We directly prove this proposition from the joint distribution mutual information decomposition formula:

I((Y, Z);X) =

∫
p(x,y, z) log

p(x,y, z)

p(x)p(y, z)
dxdydz

= EX

[∫
p(y, z|x) log

(
p(y|x)
p(y)

· p(z|y,x)
p(z|y)

)
dydz

]
= EX

[∫
p(y|x)p(z|y,x) log p(y|x)

p(y)
dydz

]
+ EX

[∫
p(y|x)p(z|y,x) log p(z|y,x)

p(z|y)
dydz

]
= EX

[∫
p(y|x)

(∫
p(z|y,x)dz

)
log

p(y|x)
p(y)

dy
]
+ EY

[∫
p(x, z|y) · log p(x, z|y)

p(x|y) · p(z|y)
dxdz

]
= I(Y ;X) + I(Z;X|Y ).

(2)
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Further, if X and Z are both independent functions of Y , then Z does not provide more information about X than Y , i.e.,
I((Y,Z);X) = I(Y,X). In our paper, since the noisy view Xt and the representation of the masked view Z = E(Xm) are
independently obtained from the original data X , we have I(X;Z) = I((X,Xt);Z) = I(Xt;Z) + I(X;Z|Xt).

Proposition 2. (Data Processing Inequality) Let three random variables form the Markov chain X → Y → Z, implying Z
is conditionally independent of X and only depends on Y . Then no processing of Y can increase the information about X:

I(Y ;X) ≥ I(Z;X), (3)

with the equality I(Y ;X) = I(Z;X) if and only if I(Y ;X|Z) = 0.

Proof. From Proposition 1, we have I(Y ;X) = I((Y,Z);X) − I(Z;X|Y ). Similarly, I(Z;X) = I((Y, Z);X) −
I(Y ;X|Z). Therefore, we can obtain that:

I(Y ;X)− I(Z;X) = I(Y ;X|Z)− I(Z;X|Y ) (4)
= I(Y ;X|Z) ≥ 0, (5)

where I(Z;X|Y ) = 0, if given X ⊥⊥ Z|Y .

1.2. Bayes Error Rate of Representations

Theorem 3. (Bayes Error Rate of Representations) Let Y denote the labels of the data and V denote a certain view of the
data. For data representation distribution Z, its Bayes error rate can be estimated as:

Pe ≤ 1− e−(H(Y )−I(Z;Y )) (6)

≤ 1− e−(H(Y )−I(Z;Y ;V )−I(Z;Y |V )). (7)

Proof. According to [3], the relationship between the Bayes error rate Pe and the conditional entropy H(Y |Z) is:

−ln(1− Pe) ≤ H(Y |Z), (8)

which is equivalent to
Pe ≤ 1− e−H(Y |Z). (9)

From the definition of mutual information, the relationship between mutual information and entropy is I(Z;Y ) = H(Y ) −
H(Y |Z). Therefore, we have

Pe ≤ 1− e−(H(Y )−I(Z;Y )). (10)

Further, with the equation I(Z;Y ) = I(Z;Y |V ) + I(Z;Y ;V ), we can obtain that

Pe ≤ 1− e−(H(Y )−I(Z;Y ;V )−I(Z;Y |V )). (11)

2. Implementation Details
2.1. Generative Models for Comparison

For generative evaluation, we compare our method with the reconstruction-based method SkeletonMAE [12] and diffusion-
based methods DDIM [10] and MDM [11] on the NTU 60 xsub dataset. For SkeletonMAE, we follow the re-implementation
of [8], which also employs a vanilla Transformer as the backbone and achieves better performance than the original Skele-
tonMAE.

For DDIM and MDM, the designs of both methods focus on the targets of prediction and training losses and are agnostic
to the specific network architecture. Specifically, DDIM follows the training target of DDPM [6] and predicts ϵ. MDM
predicts x0 and calculates position loss, velocity loss, and foot contact loss. Therefore, we re-implement DDIM and MDM
with the same Transformer architecture as ours (except that MacDiff replaces LN with AdaLN). The model depth is 5 and the
embedding dimension is 256. In MDM, we set λpos = 1, λvel = 1 and λfoot = 0 following the default setting. In addition,
the original MDM embeds all joints in a single frame into a token, different from our embedding strategy. We implement the
original MDM with temporal-only embedding, a model depth of 5, and an embedding dimension of 512. However, the latter
implementation is outperformed by the former implementation on the large-scale NTU 60 xsub dataset.
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Figure 1. Noise schedules controlled by τ .

2.2. Generation Metrics

In this section, we describe the metrics for unconditional motion generation, i.e., FID, KID, diversity, and precision/recall,
which are all based on the latent features of generated samples. We choose the MAMP encoder with a hidden dimension of
256 pre-trained on NTU 60 xsub for feature extraction. We randomly sample 1000 sequences for calculating metric scores.

FID. Fréchet inception distance (FID) [4], borrowed from the image domain, evaluates the quality of samples generated by
generative models. FID fits a Gaussian distribution to the feature distribution of generated data and that of real data (from the
testing set), and then computes the Fréchet distance between those Gaussians, defined as:

FID = ∥µ− µ′ ∥2 +Tr(Σ + Σ′ − 2(Σ Σ′)
1
2 ), (12)

where µ, µ′ denote the means of the real and generated data, and Σ,Σ′ denote the covariance matrices of the real and
generated data. A lower FID implies better results.

KID. Kernel Inception Distance (KID) [2] is a metric similar to FID. KID compares skewness as well as the mean and
variance by using a polynomial kernel to calculate the MMD between feature distributions. A lower FID implies better
results.

Diversity. Diversity measures the variance of all generated samples by calculating the mean L2 distance between the
features. A diversity closer to the diversity of real data implies better results. Since all the evaluated models yield lower
diversity than real data, we mark it with an upwards pointing arrow indicating that a higher diversity is better.

Diversity =
1

N

N∑
i=1

∥ zi − z′
i ∥2. (13)

Precision and Recall. Precision measures the probability that a generated sample falls within the real distribution, while
recall measures the probability that a real sample falls within the generated data distribution. Precision and recall are closely
associated with fidelity and diversity, respectively. Higher precision and recall imply better results.

2.3. Noise Schedule

The cosine schedule, proposed by [1], is a widely-used noise schedule in diffusion models, defined as:

ᾱcos
t = cos

(
π

2
·
(
t+ 0.008

1.008

)2
)
, (14)



where t ∈ [0, 1] denotes the timestep (divided by the total timestep T ). In MacDiff, we define a series of noise schedules
controlled by a hyper-parameter τ , defined as:

ᾱt(τ) = (1 + τ) · (1− t)− τ · ᾱcos
t . (15)

τ = −1 is the cosine schedule, and τ = 1 is the inverse-cosine schedule proposed by [7]. τ = 1 corresponds to a schedule
linear for ᾱt, which is different from the linear schedule defined by [6] in that the latter is linear for βt. Fig. 1 shows the
visualization of different noise schedules.

3. Qualitative Results and Discussion
3.1. Motion Generation

In Fig. 2, we provide unconditional motion generation results of MacDiff. The number of frames is 120, and we plot every
12 frames for visualization. As shown in Fig. 2, the MacDiff diffusion decoder is capable of generating diverse and high-
quality skeleton data. In this paper, we do not explore other generation settings such as class-conditioned or text-conditioned
generation. However, our conditional diffusion framework is able to integrate other types of condition, and we will leave this
to future work.

3.2. Motion Reconstruction

We provide motion reconstruction results of MacDiff. We randomly occlude 10 frames out of 120 frames for our model to
reconstruct, which is outlined in red. We plot every 4 frames and show a part of the sequence including the occluded frames.
As shown in Fig. 3, MacDiff can accurately reconstruct static actions and smooth motions. MacDiff may also introduce some
semantically reasonable changes, which we attribute to the stochasticity and imagination ability of diffusion models.

3.3. One-Step Denoising for Data Augmentation

In our proposed diffusion-based data augmentation, we first pre-calculate the representations of labeled samples and then
perform one-step denoising from some timestep ts guided by the representations. In addition to the quantitative ablation
study, we provide qualitative results to verify our choices for (1) conditional denoising (using representations) for preserving
labels, (2) a medium ts, and (3) one-step denoising rather than multi-step sampling.

In Fig. 4, we compare the results of conditional denoising and unconditional denoising at ts = 500. Samples generated
with unconditional denoising lose some important label-relevant semantics, which are preserved via conditional sampling.
For example, in “vomiting” the hands should be close to the mouse, in “chest pain” the hands should be around the chest,
and in “kicking something” the feet should have obvious motion. Therefore, the guidance of the condition ensures that the
generated samples are label-preserving.

In Fig. 5, we compare the results of different ts. A small ts brings little difference compared with the original data and
fails to serve as a data augmentation. A large ts may change the semantics of the augmented data, thus changing the labels.
For example, the “brush hair” action is mainly identified by hand movements, which are blurred for ts = 900 in Fig. 5.

In Fig. 6, we compare the results of one-step denoising and multi-step denoising (sampling). The two methods yield similar
results that are difficult to differentiate in terms of effectiveness. However, one-step denoising has a smaller computational
cost, which allows for generating diverse augmented data at different epochs and yields better performance. Therefore, we
adopt one-step denoising for data augmentation in semi-supervised protocols.

4. More Ablation Study
4.1. Conditioning Module Design

As shown in Tab. 1, we compare different designs of the conditioning module. Apart from the AdaLN layer, we explore
two other designs. In self-attention conditioning, the representation token(s) z are directly concatenated with the input tokens
of the decoder and guide the denoising process via the self-attention layers. z can either be the global representation zglobal

or the local representations zlocal, which correspond to the self-attention (global) and self-attention (local) settings in Tab. 1,
respectively. In cross-attention conditioning, a cross-attention layer is added after each self-attention layer, where the local
representation tokens attend to the decoder tokens.

The self-attention (global) conditioning performs significantly worse compared to its counterparts, indicating that a single
global token fails to provide enough guidance for the decoder via self-attention. The self-attention (local) is similar to the



MAE [5] decoder design and requires the representations to contain more low-level details, which explains its high fine-tuning
performance [13]. However, we aim to obtain a meaningful global representation, and thus we do not adopt this conditioning
design. The cross-attention conditioning also performs badly, failing to learn a meaningful representation. MacDiff with
AdaLN as conditioning modules works best.

Table 1. Ablation study on the conditioning module. We report results on NTU 60 xsub under the linear and fine-tuning evaluation protocol.

Conditioning Linear Fine-tuningmodule

Self-attention (global) 82.1 91.7
Self-attention (local) 84.8 93.2
Cross-attention 82.4 92.3
AdaLN 86.4 92.7

4.2. Diffusion Prediction Target

We compare different prediction targets of diffusion, i.e., ϵ-prediction, x0-prediction and v-prediction [9]. Note that we
focus on the effects of prediction targets on representation learning rather than generation in this paper. As shown in Tab. 2,
ϵ-prediction performs better than x0-prediction and v-prediction.

Table 2. Ablation study on the prediction target. We report results on NTU 60 xsub under the linear and fine-tuning evaluation protocol.

Prediction Linear Fine-tuning

ϵ 86.4 92.7
x0 83.8 92.0
v 84.5 92.4

4.3. Global-Local Conditioning

In MacDiff, we obtain the condition z by unshuffling the local representations zlocal and filling the masked positions
with zglobal. We compare this global-local conditioning with global-only conditioning, which simply broadcasts zglobal to
obtain z. By allowing the decoder to leverage and directly optimize the local representations, global-local conditioning yields
significantly better results than its counterpart.

Table 3. Ablation study on the global-local conditioning strategy. We report results on NTU 60 xsub under the linear and fine-tuning
evaluation protocol.

Global-local Linear Fine-tuningconditioning

83.7 91.3
! 86.4 92.7



Figure 2. Unconditional motion generation results. We plot every 12 frames.
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Figure 3. Motion reconstruction results. GT and Recon represents the ground truth data and reconstructed data, respectively, and the
reconstructed frames are outlined in red. We plot every 4 frames.
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Figure 4. Comparison of unconditional denoising results and conditional denoising results. We use one-step denoising from timestep
ts = 500. Conditional denoising is significantly better at preserving the label-relevant semantics while introducing some detail changes.
We plot every 12 frames.
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Figure 5. Comparison of different timesteps ts for one-step denoising. A small ts brings little difference compared with the original data,
while a large ts may change the semantics of the augmented data. But generally, our method is robust to the choice of ts, so we simply set
a medium timestep ts = 500 by default. We plot every 12 frames.
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Figure 6. Comparison of one-step denoising and multi-step denoising. The two methods yield similar results that are difficult to differentiate
in terms of effectiveness. Therefore, we adopt one-step denoising with smaller computational cost, which allows for generating diverse
augmented data at different epochs. We plot every 12 frames.
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